A normal form for nonlinear resonance of embedded solitons

نویسندگان

  • Dmitry E. Pelinovsky
  • Jianke Yang
چکیده

A normal form for nonlinear resonance of embedded solitons is derived for a coupled two-wave system that generalizes the second-harmonic-generating model. This wave system is non-Hamiltonian in general. An embedded soliton is a localized mode of the nonlinear system that coexists with the linear wave spectrum. It occurs as a result of a codimension-one bifurcation of non-local wave solutions. Nonlinearity couples the embedded soliton and the linear wave spectrum and induces a onesided radiation-driven decay of embedded solitons. The normal form shows that the embedded soliton is semi-stable, i.e. it survives under perturbations of one sign, but is destroyed by perturbations of the opposite sign. When a perturbed embedded soliton sheds continuous wave radiation, the radiation amplitude is generally not minimal, even if the wave system is Hamiltonian. The results of the analytical theory are confirmed by numerical computations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of embedded solitons in the generalized third-order nonlinear Schrodinger equation.

We study the generalized third-order nonlinear Schrodinger (NLS) equation which admits a one-parameter family of single-hump embedded solitons. Analyzing the spectrum of the linearization operator near the embedded soliton, we show that there exists a resonance pole in the left half-plane of the spectral parameter, which explains linear stability, rather than nonlinear semistability, of embedde...

متن کامل

Stable embedded solitons.

Stable embedded solitons are discovered in the generalized third-order nonlinear Schrödinger equation. When this equation can be reduced to a perturbed complex modified Korteweg-de Vries equation, we developed a soliton perturbation theory which shows that a continuous family of sech-shaped embedded solitons exist and are nonlinearly stable. These analytical results are confirmed by our numeric...

متن کامل

Numerical Analysis of Stability for Temporal Bright Solitons in a PT-Symmetric NLDC

PT-Symmetry is one of the interesting topics in quantum mechanics and optics. One of the demonstration of PT-Symmetric effects in optics is appeared in the nonlinear directional coupler (NLDC). In the paper we numerically investigate the stability of temporal bright solitons propagate in a PT-Symmetric NLDC by considering gain in bar and loss in cross. By using the analytical solutions of pertu...

متن کامل

Theory of Nonlinear Matter Waves in Optical Lattices

Received (received date) Revised (revised date) We consider several effects of the matter wave dynamics which can be observed in Bose-Einstein condensates embedded into optical lattices. For low-density condensates we derive approximate evolution equations, the form of which depends on relation among the main spatial scales of the system. Reduction of the Gross-Pitaevskii equation to a lattice ...

متن کامل

Two-dimensional solitons in nonlinear lattices.

We address the existence and stability of two-dimensional solitons in optical or matter-wave media, which are supported by purely nonlinear lattices in the form of a periodic array of cylinders with self-focusing nonlinearity, embedded into a linear material. We show that such lattices can stabilize two-dimensional solitons against collapse. We also found that stable multipoles and vortex solit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002